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ABSTRACT 

Skin cancer is the most prevalent cancer diagnosis worldwide. Squamous cell carcinoma 

(SCC) is one of the most common diagnoses. Fortunately, these cancers are rarely fatal if 

detected and treated early on. However, current treatment options can be painful, 

disfiguring and can require long-term treatment courses, resulting in poor patient 

compliance and cancer progression. Since SCC begins as precancerous lesions, an 

opportunity exists for early preventative interventions which this work aims to address. 

We produced stabilized microfibers via centrifugal spinning and UV photocrosslinking 

composed of poly(ethylene oxide) functionalized with cinnamoyl chloride. Curcumin, a 

molecule known for its anti-cancer properties was loaded into the stabilized fibers and 

exhibited sustained release. The dose-dependent effect of free curcumin on A549 cancer 

cells was investigated. This work demonstrates the potential for this system as a 

transdermal delivery device for the treatment of skin cancer. 

Keywords 

Poly(ethylene oxide), cinnamoyl chloride, UV photocrosslinking, microfibers, centrifugal 

spinning, curcumin, transdermal, drug delivery, cancer  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1. INTRODUCTION  
1.1. Motivation  

Skin cancer is the most prevalent cancer diagnosis worldwide [1, 2], affecting 

approximately 2-3 million people annually [3]. Squamous cell carcinoma (SCC), a 

non-melanoma skin cancer is one of the most common diagnoses. Fortunately, these 

cancers are rarely fatal if detected and treated early during its progression. However, 

current treatment options available such as surgery, cryotherapy and topical creams 

can often be painful, disfiguring, require long-term treatment courses and can cause 

local skin reactions. Due to these factors, patient compliance suffers [4], resulting in 

unnecessary cancer progression. Therefore, there exists a need for an effective novel 

treatment option which permits patient compliance and is effective in preventing 

progression of precancerous lesions into an invasive, malignant state.  

Overall, this thesis aims to study the chemical, physical and biological properties of  

photostabilized poly(ethylene oxide)(PEO)-cinnamate fibers as a carrier for curcumin 

to decrease cancer cell survival and proliferation. 
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2. LITERATURE REVIEW 
2.1. Skin, Skin Cancer and Treatment Options 

2.1.1. Skin 
The skin is the largest organ of the body, covering approximately 1.5 - 2 m2 and 

comprises 15 - 20% of the total body weight. There are three main layers of the skin, 

epidermis, dermis and hypodermis (Figure 2.1). The epidermis is the most superficial 

layer, comprised of keratinocytes, stratified squamous keratinized epithelium and 

pigment producing melanocytes. The middle layer is the dermis, consisting mostly of 

connective tissue and the deepest layer is the subcutaneous layer, also known as the 

hypodermis. Skin can be classified as either thick or thin depending on the thickness 

of the epidermal layer, each with distinct functions. Thick skin is present on the palms 

of the hands and the soles of feet, where exposure to friction is the highest. The rest 

of the body covering is thin skin. The epidermis of thin skin is further divided into 4 

layers, starting with the most superficial: stratrum corneum, granular layer, spinous 

layer and basal layer. Each layer is composed of histologically distinctive cell types 

which are used to identify the source pathological conditions. The skin possesses five 

main essential roles: protection, metabolism, sensory, thermoregulation and sexual 

signalling [5]. Although the skin acts as a protective barrier to UV radiation [6], 

excessive exposure, genetic predispositions [7] or a combination, play an additive 

role in the pathogenesis of skin cancers [8]. 
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Figure 2.1: Structure of the skin, including layers and main cell types. 

2.1.2. Skin Cancer 
Skin cancers are defined as cancers originating from skin and are classified by the 

cells from which they are derived, these can be categorized into two major groups: 

melanoma and non-melanoma skin cancers (NMSCs). The most common subtypes of 

NMSCs are basal cell (BCC) and squamous cell carcinoma (SCC) [1]. Melanomas 

are cancers that originate from melanocytes, whereas BCC and SCC are cancers 

originating from basal cells and squamous cells, respectively. SCC typically begins as 

sun induced skin lesions called actinic keratosis (AK) [9]. A classic model for cancer 

pathogenesis may be used to describe the progression of actinic keratoses into SCC 

[10]. First, a mutation in a gene such a tumour suppressor may result in the 

development of this precursor lesion. Additively, mutations in proto-oncogenes may 

result in increased proliferative capacity leading to neoplastic properties and the 

epidermis

dermis

hypodermis

squamous cell

basal cell

melanocyte

fibroblast

fat cell
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development of invasive SCC [10]. The induction of these mutations for SCC is 

typically from UV exposure, causing thymidine dimer [11] formation in DNA 

resulting in mutations [9, 12].  

Epidemiologically, skin cancers and more specifically NMSCs are the most common 

cancer diagnoses with incidence rising worldwide. Although mention of its incidence 

is often neglected in worldwide cancer reports due to inconsistent reporting to cancer 

registries to obtain accurate estimates [13, 14]. Fortunately, the mortality rate 

associated with NMSCs is low when detected and treated early on during its 

progression. However, current treatment options are accompanied by low patient 

compliance due to visible side effects [15]. As a result of low patient compliance, AK 

have the potential to develop into invasive SCC, a larger economic and health burden. 

An international study on physical perceptions about current treatment options for AK 

revealed a need for research to address the limitations of current therapies in order to 

improve outcomes [15]. 

2.1.3. Current Treatment Options and Side Effects 
In order to reduce rates of SCC, AK lesions must be managed prior to its progression 

into invasive cancer. Several options currently exist to treat AK. However, there does 

not exist a therapy which meets all the needs of the consumer: good efficacy to 

reduce risk of SCC, low risk of adverse effects, few dosages and short treatment time. 

One current option is surgical removal of lesions, but can result in scarring. Other 

common options include topical treatments such as 5-fluorouracil and imiquimod 

creams, which are less invasive but require extended treatment periods, and can lead 

to undesirable local skin reactions (redness, scarring, etc.). Given that these 

treatments require compliance for up to 16 weeks, patients may be required to 

manage these side effects for long periods of time, decreasing the tolerability of the 

treatment. The downfalls of these current treatment options result in patient non-

compliance and ultimately increasing patient risk for developing invasive SCC. 
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Therefore, the options are to develop new drugs or alternatively improve the delivery 

of current drugs with fewer side effects with equivalent effectiveness are required in 

order to prevent NMSC progression in patients with AK. 

Chemoprevention, a promising area in anti-cancer research is the administration of 

dietary or pharmacologic agents to inhibit or reverse carcinogenesis [16, 17]. In 

contrast to typical chemotherapeutics, these products present with lower side effects. 

Chemopreventive agents may be classified based on the stage of interference during 

carcinogenesis. Blocking agents act early on in the progression by inhibiting the 

conversion of cells from a normal to neoplastic state. Alternatively, suppressing 

agents inhibit proliferation and growth during cancer progression [18]. Examples of 

identified chemopreventive agents are vitamin A [19, 20], lycopene [21], grape seed 

extract [22, 23], green tea extract [24, 25] and curcumin [18, 26, 27]. The focus of 

this work will be on curcumin as a chemopreventive. 

2.1.4. Curcumin  
The naturally occurring and active components of Curcuma longa (turmeric) called 

curcuminoids are isolated from the rhizome, the root of the plant, which contains the 

majority of curcuminoids. The turmeric root and spice derived from it have been used 

as food additives, medicines, textile dyeing and cosmetics for over 2000 years [28]. 

Figure 2.2: Structure of curcumin, keto (top) and enol (bottom) tautomers.   



www.manaraa.com

!6

Curcumin (C21H20O6) [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-

dione] also known as diferuloylmethane and curcumin I is the principal curcuminoid 

and regarded as the most biologically active curcuminoid of turmeric.  This molecule 

exists as keto-enol tautomers as a solid and in solution (Figure 2.2). 

Desmethoxycurcumin (curcumin II), bis-desmethoxycurcumin (curcumin III) and 

cyclocurcumin are additional chemical constituents of curcuminoids which have 

previously been extracted and identified [29, 30]. In general, the composition of 

commercial curcumin contains: ~77% of curcumin I, ~17% curcumin II and ~3% 

curcumin III. Curcumin I, a polyphenol providing the yellow-orange colour is a 

powder that is soluble in ethanol, dimethylsulfoxide and acetone but nearly insoluble 

in water and ether. Curcumin I possesses a molecular weight of 368.37 g/mol and a 

melting point of 183 °C. Commercially available turmeric and curry powders contain 

curcumin however, these is batch to batch variability of the purity as described by 

Tayyem et al. [31], thus it is imperative to determine the purity of curcumin to clearly 

establish a dose-response relationship.  

Anti-Cancer and Chemopreventive Properties of Curcumin in vitro and in vivo 

It has been demonstrated that curcumin interacts with many cellular targets including 

transcription factors, enzymes and growth factor receptors, ultimately resulting in 

altered gene expression and imparting antioxidant, anti-inflammatory and anti-cancer 

properties (Table 1). Molecules identified as chemopreventive agents are defined by 

their ability to arrest progression or prevent cancer development and have several 

commonalities including enhanced apoptosis, growth inhibition and proliferation, 

halting cellular invasion and inhibition of angiogenesis. 



www.manaraa.com

!7

Table 1: Summary of curcumin’s cellular targets [32] 

General 
category

Target Function of target/
Observation in 

cancers

Effect of curcumin

Transcription 
factors

Nuclear factor kappa 
B (NF-κB)

Suppresses apoptosis 
and is constitutively 
expressed in many 
cancers

Inhibits the activation 
of NFκB

Activating protein-1 
(AP-1)

Involved in 
proliferation and is 
constitutively 
expressed in many 
cancers

Inhibits activation of 
AP-1

Peroxisome 
proliferator activated 
receptor gamma 
(PPAR-ɣ)

Inhibits proliferation 
of nonadipocytes

Activates PPAR-ɣ 
inhibiting cell 
proliferation, inducing 
apoptosis 

Notch-1 Maintains balance 
between cell 
proliferation, 
differentiation and 
apoptosis. Balance 
disrupted in cancer

Reduces levels of 
Notch-1

Wnt/beta-catenin Highly regulated 
signaling pathway. 
Often dysregulated in 
cancers

Inhibits pathway 
through reduction of 
nuclear β-catenin

Enzymes Cyclooxygenase 
(COX-2)

Inflammatory enzyme, 
overexpressed in 
many cancers 
resulting in cell 
proliferation and 
inhibition of apoptosis

Inhibits expression of 
COX-2

Matrix 
metalloproteinase 
(MMP)

Mediators of tumor 
metastasis, often 
upregulated in cancers

Inhibits MMP-9

Growth factors 
and receptors

Epidermal growth 
factor receptor 1 
(EGFR1)

Overexpressed in 
cancer

Inhibits expression, 
act as EGFR1 
antagonist

Fibroblast growth 
factors (FGFs)

Overexpressed in 
cancer and involved in 
angiogenesis

Angiogenic pathway 
inhibited 

Vascular endothelial 
growth factor (VEGF)

Major role in 
angiogenesis and 
cancer growth

Inhibits expression of 
VEGF
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Safety and pharmacological effects of oral curcumin 

Curcumin is remarkably non-toxic and is well tolerated even at doses as high as 12 g/

day [33]. However, due to its hydrophobicity, water insolubility and first pass 

metabolism, it has poor oral bioavailability. Orally is the most common and 

convenient route of drug administration. In order for the drug to reach the systemic 

circulation it must first be absorbed by the intestinal epithelium and enter the hepatic 

portal system where first pass metabolism occurs. After which, drug concentrations 

are dramatically reduced due to metabolism in the liver and the remaining dose may 

finally be able to enter the systemic circulation to exert their effects [34]. Studies [33, 

35] conducted to investigate oral dose-serum concentration relationships showed that 

curcumin and its metabolites are detectable in serum with curcumin doses greater 

than 4000 mg/day with a respective maximum serum concentration of 0.5±0.11 µM. 

This serum level peaked one to two hours following oral intake and declined within 

12 hours. Doses below 4000 mg/day were undetectable in serum. The anti-cancer 

properties of curcumin are most pronounced in and near the gastrointestinal tract 

when orally administered and are most effective against cancers of such tissues. 

Garcea et al. [34] suggest that although curcumin is an effective chemopreventive 

agent in vitro, the oral dose required for concentrations with effective 

pharmacological activity are likely not feasible in humans. These studies provide a 

thorough investigation into the poor oral bioavailability of curcumin. Thus, there is a 

need for improved delivery to maximize the benefits for this effective 

chemopreventive agent.  

Curcumin as an iron chelator in vivo 

An unexpected observation made by Jiao, Y. et al. [36] revealed the modulation of 

iron metabolism of liver cells in vitro suggestive of curcumin’s ability to chelate iron. 

Two main proteins were investigated, ferritin and glutathione S-transferase (GSTα). 

Ferritin is a protein which maintains intracellular iron levels and a decrease in ferritin 

levels indicates lowered intracellular iron. GSTα is a cytoprotective enzyme which is 
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induced in parallel with ferritin transcription and regulates ferritin levels. In this 

study, liver cells were cultured in the presence of curcumin and the effects on ferritin 

and GSTα were measured. Curcumin induced GSTα and ferritin mRNA levels but 

reduced detected levels of ferritin protein. To further study this phenomena, mice 

were fed diets supplemented with curcumin for 12 weeks. Studies revealed a 

statistically significant reduction in ferritin protein levels and increase in GSTα levels 

in mice receiving 2% curcumin as compared to controls receiving 0% curcumin in 

their diets. This reduction in ferritin levels suggest reduction of intracellular iron 

levels and thus iron chelating ability of curcumin. Jiao, Y. et al. [36] further studied 

the impact of curcumin as an iron chelator on systemic iron levels and its impact on 

iron deficiency conditions. In this study, mice were fed diets containing various 

concentrations of iron ranging from 5 - 1000 mg/kg to establish the dose-dependent 

parameters of systemic iron such as plasma iron, hemoglobin, hematocrit levels and 

others were measured. Mice from all groups showed no statistically significant 

differences in such parameters. Subsequently, mice were fed diets supplemented with 

curcumin at concentrations ranging from 0 - 2% to study the effect of curcumin on 

mice receiving different amounts of iron in their diets. For mice receiving curcumin 

with diets containing low-iron, a significant decrease in all parameters of systemic 

iron was observed, suggesting iron deficiency anemia was induced by curcumin. 

Microcytosis, a decrease in red blood cell size indicative of anemia, was found for 

mice receiving diets containing low-iron with microcytosis increasing proportionally 

with amount of curcumin intake[37]. 

  

At this point, curcumin has the potential to chelate iron and alter systemic iron 

metabolism as demonstrated by studies in vitro and in vivo. Thus oral administration 

of curcumin may be harmful in patients with diminished iron stores due to diet, 

anemia or other chronic diseases. Anemia is prevalent in patients with cancer [38] and 

thus, orally administered curcumin may be particularly harmful in large doses to 

those patients. Although a study comparing oral versus topical curcumin in a skin 
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cancer model reported equivalent efficacy, localized treatments may be preferred over 

oral to avoid iron chelation complications. 

Topical administration of curcumin 

A method of drug administration that would avoid low oral bioavailability and 

potential of iron chelation in vulnerable populations would be possible in cases where 

local delivery of curcumin could be accomplished. One such example is externally on 

the skin. Curcumin’s activity in preventing the progression of cancer was initially 

demonstrated with mice. Mice were treated with 12-O-tetradecanoylphorbol-13-

acetate (TPA), a known inducer of skin cancer, with co-treatment of a topical 

curcumin paste. The effects of TPA were inhibited due to curcumin’s inhibitory effect 

on cyclooxyrgenase activities [39]. Other studies using curcumin cream pastes note 

that the creams were irritating in nature causing thickening of the epidermis. This 

issue may be augmented in humans as side effects are one of the main causes of poor 

patient compliance [40, 41]. Therefore, although topical administration is preferred 

for some applications, there does not exist a carrier without side effects.  

2.2. Drug Delivery 
Drugs are of significant importance in treating diseases. One category is the 

chemotherapeutic drugs, a class of drugs used to treat cancer. Typically the mode of 

administration is intravenously and less commonly, orthotopic injection into specific 

sites such as the spine, by mouth as a pill or liquid or topically as a cream. Side 

effects of chemotherapy may be severe as a result of normal cell death along with 

cancer cell death. Typically, chemotherapeutic drugs are non-specific and systemic 

introduction into the body is the main cause of side effects [42]. Thus, targeting drug 

activity by either exploiting key differences between cancer and healthy tissues or 

localizing drug delivery is of clinical importance.  

The major advantage of administering drugs using a drug delivery system is the 

maintenance of drug concentrations within the therapeutic range (Figure 2.3). 



www.manaraa.com

!11

Minimizing general exposure to these compounds is ideal, however, in order to 

maintain effective concentrations, smaller, more frequent administrations would be 

required and risk increasing plasma drug levels into the toxic range. Both 

inconvenience and side effects result in poor patient compliance and decrease quality 

of life. Thus, controlled drug delivery to maintain safe, effective concentrations is 

highly desired. 

Figure 2.3: Drug concentration following drug administration with (solid line) and 
without (dashed line) controlled release. 

Drug delivery systems (DDS) may be classified by the mechanism of release they 

follow: solvent activated, chemically controlled and diffusion controlled [43]. Briefly, 

solvent activated systems are osmotically or swelling controlled. In osmotically 

controlled systems, an external fluid moves against the drug concentration gradient, 

forcing the drug out of the device. This system works for water-soluble drugs and 

zero-order kinetics are possible. In swelling controlled systems, drugs are dispersed in 

a dry hydrophilic polymer and swell once they encounter an aqueous environment 

such as body fluids resulting in diffusion of drug out of the polymer. Chemically 

controlled delivery systems are further classified as biodegradable or pendant-chain. 

Biodegradable systems release the drug as the polymer disintegrates. Pendant-chain 

systems have drug molecules chemically bound to the polymer chains with release 
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dependent on cleavage of that bond. Diffusion controlled DDS can be further 

classified into reservoir or monolithic devices. In reservoir devices, the polymer 

surrounds a core of drug where release occurs by diffusion through the polymer 

membrane. This type of release can be described using Fick’s first law (equation 1) if 

the membrane is non-porous. Where J is the flux/unit area, D is the diffusion 

coefficient through the membrane, K is the partition coefficient, ΔC is the 

concentration difference across the membrane and l is the thickness of the membrane. 

Monolithic devices have the drug uniformly dispersed throughout an inert (non-

swollen or fully swollen, and non-degrading) polymer and release is controlled by 

diffusion of the drug from the polymer matrix. Cumulative amount of drug released 

can be calculated for a thin slab using early (equation 2) and late (equation 3) time 

approximation equations. Where Mt is the amount of drug released at time t, M∞ is 

the amount of drug loaded, D is the diffusion coefficient and l is the thickness of the 

slab.  

 

Cylindrical and spherical geometries require additional parameters in the calculations 

(equations 4 and 5). Release of a drug from these geometries can also be calculated 

using early time approximation and late time approximation. Parameters are the same 

as above, in addition to those, a is the radius of the cylinder or sphere. These 

equations were described by Baker and Lonsdale[44]. 

(1)

(2)

(3)
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Many applications of these drug delivery systems exist on the market today. Some 

examples of diffusion controlled drug delivery devices include, Progestasert® a 

reservoir DDS which releases progesterone and acts as an intrauterine contraceptive. 

Drug eluting stents are coated in a drug-containing polymer is an example of a 

monolithic DDS. Transdermal patches are polymer DDS that adhere to the skin, these 

systems are designed to be either reservoir or monolithic. An example is the 

NICODERM® patch manufactured by Johnson and Johnson.  

A potential drug for delivery is curcumin, it is selective in its apoptotic and non-

proliferative effects. This is due to the phenotype of tumour cells. Firstly, it has been 

shown that tumour cells have increased uptake of curcumin [45], thus localizing its 

effects. Secondly, many tumour cells have constitutively activated NF-κB, a complex 

that regulates DNA transcription, which can result in cells proliferating 

uncontrollably. Curcumin acts to inhibit this over-activation, thus reducing 

proliferation [46]. Additionally, glutathione acts to reverse the inhibition of NF-κB by 

curcumin which would allow for proliferation. Lower levels of glutathione in tumour 

cells compared to healthy cells reduces that ability [47]. This selective capability 

would provide an additional means of targeting activity against tumour cells.  

2.3. Common Fiber Production Methods 

There is an extensive list of fiber production methods [48] which use a combination 

of principles covered below. However, for the purpose of this work, a brief summary 

of three methods will be covered with a focus on centrifugal spinning. Many of these 

(4)

(5)
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methods have been used for biomedical purposes such as tissue engineering and drug 

delivery.  

2.3.1. Extrusion Fiber Production 

Formation of fibers via extrusion require polymers to be in a viscous liquid state, 

typically achieved through melting for thermoplastic or by dissolving in a solvent for 

non-thermoplastic polymers. The liquid is then forced through a spinneret which 

contains pores, to form fibers. There are three main types of extrusion fiber 

formation: wet spinning, dry spinning and melt spinning. Wet spinning, uses solvents 

to both dissolve the polymer prior to extrusion and then to precipitate the fiber post-

extrusion. Dry spinning, in contrast to wet spinning uses air or an inert gas to 

evaporate the dissolving solvent post-fabrication, resulting in solidification. Melt 

spinning, as its name suggests, is the melting of a thermoplastic polymer and cooling 

of the polymer post-fabrication which results in fiber solidification[48].  

Melt spinning is unique in that it does not require the use of solvents. The use of 

solvents in some spinning methods carry concerns related to environmental impact, 

toxicity of final product and a decrease in productivity and efficiency of the overall 

process. Without the use of solvents in melt spinning the concern for solvent-related 

toxicity for biomedical applications and requirement of polymer solution 

concentration optimization for spinnability is eliminated, a notable advantage. 

Additionally, the solidification of fibers after extrusion involve a one-way heat 

transfer, a rapid process resulting in high production rates, in comparison to solution 

spinning which requires evaporation, a mass transfer which is less efficient [48]. 

Some biomedical applications of extruded fibers include, extruded collagen fibers as 

a scaffold for tissue engineering [49], microextruded polyesters for tissue engineering 

scaffolds and controlled drug delivery applications [50] and synthetic sutures that are 

extruded polymers which are sometimes further processed by braiding. 
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2.3.2. Electrospinning Fiber Production 

Production of fibers via electrospinning involves polymers dissolved in an 

appropriate solvent which is fed through a needle with flow controlled by a syringe 

pump. A droplet is formed at the tip of the needle which is held in place by its surface 

tension. With an applied voltage between the needle and a grounded collector plate 

located some distance away from the needle, a charge is induced within the droplet. 

These charges repel each other within the droplet and at a critical point, this force will 

overcome the surface tension holding the droplet in place and a distortion, termed 

Taylor cone will form and a jet will exit this cone to form fibers. The fibers will travel 

towards the collector and while the solvent evaporates, the fiber undergoes a 

whipping motion resulting in elongation and a fiber diameter decrease. This method 

has several processing parameters which may be modified in order to optimize the 

fiber morphology desired. These include: needle-to-collector distance, viscosity of 

solution, polymer concentration, applied voltage, solution flow rate, electrical 

conductivity and the temperature and humidity of experimental space. These 

parameters allow for tailoring of fiber morphology. Diameters of fibers produced 

from this method range from tens of nanometers up to micrometers. These fibers have 

a large surface to volume ratio, an ideal property for many applications. 

Examples of electrospun fibers used in the literature for biomedical applications 

include tissue engineering scaffolds for bone [51], neural [52], vascular [53] as well 

as other tissues. The versatility of electrospinning allows for a variety of materials to 

be spun into random and aligned fibrous mats. Electrospun fibers have also 

demonstrated utility as drug carriers, for example anti-virals were incorporated into 

electrospun cellulose acetate phthalate fibers as a means to deliver the drug and 

prevent transmission of the human immunodeficiency virus [54].  Electrospun fibers 

are of interest in manufacturing wound dressings given the potential of nanofiber 

mats mimicking the native extracellular matrix (ECM) structure of skin, encouraging 

innate repair systems to generate ECM components and encouraging repair of the 
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wound. In combination with the structure of the fibers, impregnation of drugs may 

further encourage repair through preventing infection with antibacterials or 

therapeutic agents known to improve repair [55]. Materials such as cellulose acetate 

phthalate [54], poly(lactic-co-glycolic acid) (PLGA) [56], and poly(caprolactone) 

(PCL) [57, 58] have been used for these applications. 

2.3.3. Centrifugal Melt Spinning Fiber Production 

Centrifugal melt spinning has been used for over 100 years in the form of a sugar 

spinning apparatus, also known as a cotton candy machine. It was invented and 

patented in 1897, at that time called an “electric candy machine” and in 1904, cotton 

candy was introduced at the St. Louis World Fair. Since 1897, cotton candy 

production has been rather unchanged [59]. Sugar is loaded into a reservoir made of a 

heat conductive material where it is melted, the reservoir contains small openings 

called orifices. The term spinneret is used to label the reservoir and its orifices 

(Figure 2.4).  

Figure 2.4: A general schematic of a spinneret illustrating the reservoir, orifices and 
the mounted shaft.  

The spinneret rotates about its axis, above a heating element which melts the loaded 

material, fibers leave the orifice and are collected. The centrifugal force due to the 

rotation forces the material to exit the orifices and as that force overcomes the surface 

reservoir
orifice

shaft
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tension of the material at the orifice a polymer jet is forms, the fiber solidifies rapidly 

in the air and deposits onto the collector. 

This rapid method of fiber production has been utilized by a relatively small number 

of research groups. Badrossamay et al. [60] first published their work in 2010 using 

the principles of a cotton candy machine to solution spin nanofibers. They termed the 

method rotary jet spinning (RJS). This method was able to produce aligned 

poly(lactic acid) (PLA) nanofibers ranging from 50-3500 nm in diameter for the 

guidance of rat cardiomyocytes. The range of fiber diameters produced was wide and 

dependent on the rotation speed of the spinneret. In 2014, the group published work 

with polymer-protein hybrid, poly(caprolactone)(PCL) and collagen or gelatin. This 

work utilized the same fiber production method (RJS) and were successful in 

producing highly aligned nanofibers for the purpose of influencing cell migration 

[61]. Since then, this method has become of increasing interest in the field for tissue 

engineering [58] and this interest may be further increased with the availability of a 

commercial centrifugal spinning machine from the company FibeRio, based on the 

patented Forcespinning ® technology for producing nanofibers [62]. One of the main 

advantages of a centrifugal fiber production method is the low cost and high yield 

[63]. Although there are some limitations associated with this method such as 

constraints due to the materials’ properties resulting in variable fiber quality and 

morphology [48]. An additional limitation is the ability to align the fibers has been 

shown to be unidirectional. However, it has been noted that for tissue engineering 

applications, control of lamination to mimic native extracellular matrices is highly 

sought after [64] and this has not been demonstrated with centrifugal spinning. 

2.4. Materials for Fiber Spinning 

Various materials have been used for fiber spinning with applications ranging from 

textiles and insulation to the biomedical industry, of which biomaterials are a major 

component. Biomaterials encompass materials which are in contact with biological 

systems. There are various polymer options for these materials which may be tuned to 
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have appropriate chemical, physical and biological properties. Proper selection of 

appropriate polymers and modifications are essential to a biomaterials’ performance. 

For example, a biomaterials’ surface topography, size and shape can affect the host 

response and if mismatched, can result in infection, fibrosis and poor performance of 

the material. 

2.4.1. Polymers 

The use of natural polymers for biomaterials possesses the advantage of 

biocompatibility and bioactivity due to their innate function in the body, these 

materials include collagen, chitosan and silk fibroin. In particular, collagen forms the 

extracellular matrix of many tissues in the body, aiding in the maintenance of 

structural integrity and playing an integral role in cell signalling. Collagen has been 

used to produce fibers for tissue engineering applications. These fibers possess many 

attractive properties including: low antigenicity, good cell compatibility, low 

cytotoxicity and biodegradability. However, a downfall of collagen is the low 

availability of human sources. Most commonly used collagen sources are porcine, 

bovine and equine. The use of non-human collagen may lead to deficiencies in 

biomaterial performance due to the heterogeneity, untraceable origins, the possibility 

of disease [65] or immunological stimulator transmittance [66]. Recently, the advent 

of human recombinant collagen production provides the possibility of using human-

only sources for applications [67].  

Alternatively, synthetic polymers are often used in biomedical research given their 

availability and  potential for simple modification and functionalization. They can be 

categorized broadly into hydrophilic and hydrophobic polymer based on the 

properties of their monomer units. Common hydrophobic polymers used for 

biomedical applications include, poly(caprolactone) (PCL), poly(ester amide) (PEA) 

and polydimethylsiloxane (PDMS). Common hydrophilic polymers are poly(ethylene 

glycols)(PEG), poly(ethylene oxide)(PEO) and poly(vinyl alcohol)(PVA). 
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Another consideration about polymers is their hydrophilicity. Hydrophilicity of a 

polymer is determined by the functional groups it possesses such as hydroxyls, 

carboxyls, carbonyls, amines and amides and their interaction with water molecules 

through hydrogen bonding. Increased hydrophilicity will result in increased and 

stronger interactions with water and swelling of the material resulting in changes in 

mechanical and chemical properties [68]. Effects due to the hydrophilicity of a 

material can influence cell adhesion [69], increase water absorption, have anti-fouling  

properties[70] and enhance drug solubility and thus drug delivery. 

2.4.2. Poly(ethylene oxide) 

Poly(ethylene oxide) (PEO) is a synthetic crystalline, thermoplastic and water-soluble 

polyether compound (Figure 2.4), these compounds are called poly(ethylene glycol) 

(PEG) or PEO depending on their molecular weight, PEO for the higher molecular 

weights. The threshold for naming varies in the literature with values of 10 000 g/mol 

[71] and 25 000 g/mol [72] reported. PEG and PEO are commonly used for 

biomedical purposes as a conjugate for increasing solubility of hydrophobic drugs 

[73], coating of materials to prevent protein adsorption and opsonization [74] which 

could stimulate the immune system and result in immune system attack and immune 

rejection. These applications exploit the hydrophilicity of PEG and PEO to avoid 

these complications.  

Figure 2.5: Chemical structure of PEG and PEO, where n is the number of monomer 
units. 

Many modifications of PEO have been studied in the field of biomedical engineering. 

With hydroxyl end groups and high solubility in organic solvents, end-group 

modifications are relatively simple and the polymer may undergo a variety of 
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reactions. Copolymerization of PEO to other polymers to impart distinct properties 

such as flexibility and hydrophilicity has been shown to be effective [75]. Imparting 

properties of PEO may allow for materials typically involved in protein adsorption to 

resist such interactions and reduce the risk of   undesirable biological responses such 

as clotting [76]. In addition to copolymerizing PEO in a linear fashion, PEOs have 

been polymerized in star shapes [77, 78], a form of branching. The ability to tailor the 

shape of polymer branching allows for tuning of properties such as viscosity [79], 

porosity of constructs [78] and stimuli-sensitivity [80] for the desired application. 

PEO is a versatile, FDA approved polymer currently used in cosmetic and 

pharmaceutical products [81, 82] due to its non-toxicity and effective clearance 

through urinary and fecal excretion [75].  

2.5. Crosslinking Options for Polymers 

Water-soluble polymer fibers such as PEO fibers must undergo post-processing 

modification to stabilize them in aqueous environments such as body fluids. 

Intermolecular bonds may be formed in order to create insoluble networks. The 

degree of crosslinking which is related to stability and biodegradation may be tailored 

depending on the particular application. 

2.5.1. Methods of Crosslinking  

The two main methods for crosslinking of polymers are chemical and physical. 

Chemical crosslinking involves the addition of a chemical group to join molecules 

together.  Examples include genipin which may react with amine groups of proteins 

such as collagen [83] and polysaccharides such as chitosan [84]. Similarly, 

glutaraldehyde and formaldehyde react with hydroxyls of many different polymers 

and link molecules together through those newly formed covalent bonds. Physical 

crosslinking methods use the addition of energy through changes in temperature such 

as thermal cycling, through UV light for photocrosslinking and also through high 

energy ionizing radiation such as ion beam implantation or x-ray which form free 
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radicals which reform into crosslinks. Physical crosslinking is often preferred for 

biomedical applications as they do not introduce new chemicals into the final product. 

However, chemical crosslinking methods are highly effective and if removal of free 

reagents is possible and the byproducts of degradation are non-toxic this method is 

useful [85].  

2.5.2. Photochemical Crosslinking 

For this work, the use of photochemical crosslinking was employed. This method 

involves the addition of a chemical group to render the polymer sensitive to UV light. 

After the addition of this carbon-carbon double bond, the exposure to UV light results 

in radical formation and bond reformation between functionalized chains resulting in 

a network of crosslinked molecules (Figure 2.6) [86]. A downside of this method is 

the requirement of two separate steps, functionalization followed by 

photocrosslinking with UV irradiation. However, a benefit would be the ability to 

tune both the extent of functionalization as well as length of irradiation time to tune 

the degree of crosslinking. 

Figure 2.6: Proposed crosslinked molecule of PEO-cinnamate after UV irradiation. 
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2.5.3. Cinnamoyl Chloride 

Cinnamate functionalized polymers have been used extensively for biomedical 

research purposes. Photocrosslinking of electrospun fibers post-production [87] and 

in situ during electrospinning have been performed [88]. Cinnamate modified 

polymers have been shown to undergo UV crosslinking via [2+2] photocycloaddition 

[86]. As an acid chloride, cinnamoyl chloride is a highly reactive molecule in 

comparison to its carboxylic acid counterpart due to the chloride being an excellent 

leaving group and will readily undergo nucleophilic reactions. This allows for 

efficient functionalization of polymer end-groups. Reactions involving cinnamoyl 

chloride should be performed under dry conditions given that cinnamoyl chloride is 

highly reactive with water and would render the molecule less reactive once 

converted to cinnamic acid.  

Cinnamic acid has a natural origin, and is widely present in the plant kingdom, in 

particular in the essential oils of basil and cinnamon [89]. Cinnamoyl chloride, 

modified from cinnamic acid is typically used to functionalize polymers, there is 

potential for cinnamic acid to form during ester hydrolysis of the crosslinks. 

Fortunately, there is no evidence to support that this molecule possesses a toxic threat 

[89, 90]. Cinnamoyl chloride has been shown to have low toxicity as it is 

spontaneously metabolized in the body [91]. And is thus a good option for 

crosslinking water-soluble polymers for biomedical applications. 

2.6. Assessment of Delivery Systems 

2.6.1. Drug Efficacy and Cell Compatibility 

Evaluation of a drug's effectiveness as delivered from the drug delivery device is an 

integral step in demonstrating design and production accomplishments.  

Determination of a drug’s efficacy is typically performed prior to the design of a drug 

delivery device as DDS are used to improve on pre-existing drugs. Tests performed to 
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evaluate a drug’s performance include assays to determine the effective 

concentrations (EC) for agonists and inhibitory concentrations (IC) for antagonist 

drugs. EC50 and IC50 values are defined as the drug concentrations that exhibit 50%  

of in vitro response (Figure 2.7). These values may be used in the classification of 

drugs for their potency and the plots of activity may be guidelines for dosing. 

Figure 2.7: Definition of IC50/EC50 graphically, drug concentration at 50% activity 
is defined as the IC50/EC50 

The selection of an appropriate cell line involves the consideration of several 

variables such as the cell species as some studies are species-specific and also the 

functional characteristics of interest for the experiment such as surface and 

intracellular targets. For testing of pharmacological agents, understanding the cellular 

targets of the drug may guide selection of the cell line for testing. For study of cancer 

cells in particular, the source of the cells is not the only variable to consider given that 

cell lines mutate and do not necessarily represent the cancer from which it was 

sourced as a whole. Selection of cell lines based on cellular targets and ensuring the 

drug acts on those targets will provide valuable information for translating into in 

vivo studies. Cancer cell lines do not necessarily represent the heterogeneity of 

tumours and thus a gap exists between in vitro studies and clinical samples [92]. 
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2.6.2. Appropriate Evaluation of Transdermal Drug Delivery 

In addition to evaluating DDS in vitro, studies with appropriate animal models is 

integral prior to clinical studies. The purpose of animal studies is to evaluate the 

efficacy and safety of the proposed system. Focusing on transdermal drug delivery, 

the assessment of delivery through the skin is a major step in evaluating the system. It 

is nearly impossible to assess skin permeation using just one assessment either in 

vitro, in vivo or ex vivo [93]. Thus, a combination of these experiments is required for 

effective demonstration of delivery. For these assays, human skin is the most relevant 

for study, however availability may be limited. An animal model that is appropriate 

for study will have similar structures when compared to human skin, possessing 

similar density of hair follicles, thickness of epidermis and dermis. Animal models 

suggested include primate, porcine, snake and rodent. For some of these animals, 

considering a hairless counterpart maybe be beneficial as they are better 

representations of humans [93]. 

In addition to studying drug permeation, animal models with representative disease 

states will be of importance to demonstrate the drug permeation and activity of the 

drug. For skin cancer, nude rodent models with established protocol for inducing UV 

skin damage have been proposed [94]. 
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3. HYPOTHESIS AND OBJECTIVES 
3.1. Hypothesis 

Firstly, we hypothesize that poly(ethylene oxide) (PEO), a biocompatible polymer can 

be modified and processed into stabilized microfibers. Since PEO is water-soluble 

and the fibers will be in contact with bodily fluids, aqueous stability must be imparted 

through crosslinking using cinnamoyl chloride (CC), a highly reactive acyl chloride 

to introduce an ultraviolet (UV) sensitive double bond to the polymer for 

photocrosslinking. Secondly, we hypothesize that these stabilized fibers will be able 

to carry and deliver curcumin at a sustained level sufficient to inhibit cell 

proliferation and promote cell death. 

 3.2. Objectives 

This work aims to study the potential of a crosslinked polymeric fiber system for 

carrying and delivering curcumin and demonstrating the efficacy of curcumin on a 

cancer cell line. The main objectives of this work are to: 

1. Synthesize an ultraviolet (UV) sensitive polymer by functionalizing 

poly(ethylene oxide) (PEO) with cinnamoyl chloride. 

2. Using this bulk material to produce microfibers using centrifugal melt spinning. 

3. UV irradiation of the fibers to crosslink the polymer at cinnamoyl moieties. 

4. Investigate curcumin loading and release from crosslinked, stabilized fibers. 

5. Study the effects in vitro of free curcumin and curcumin from loaded PEO-

cinnamate fibers.  

Ultimately the goal is that centrifugal melt spun PEO-cinnamate fibers will carry and 

release curcumin locally at the site of precancerous lesions. 
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4. MATERIALS AND METHODS 
4.1 Materials 

Table 2: Materials for experimental procedures 

4.2. Synthesis: Functionalization of Poly(ethylene) oxide 
with Cinnamoyl Chloride 

100 g (2.857 mmol) of PEO was frozen in a -20 °C freezer then subsequently 

lyophilized. The samples were freeze-dried for 18 hours at 0.04 mbar at -180 °C. 

Lyophilized PEO was dissolved in 400 ml of dry DCM under stirring. An additional 

300 ml of molecular sieve dried DCM was added. Next, 3.5 ml (0.035 mmol) of dry 

pyridine was added. Subsequently, 5 g (30 mmol) of cinnamoyl chloride was added 

Material Supplier Detail Item Number

Poly(ethylene 
oxide)

Sigma Aldrich 35 000 g/mol 25322-68-3

trans-Cinnamoyl 
chloride

Alfa Aesar 97% purity 17082-09-6

Curcumin Sigma Aldrich ≥94% curcuminoid 
content

458-37-7

Anhydrous ethyl 
alcohol

Commercial 
Alcohols

99.8% Lot # 018568

Dichloromethane Solvent purification 
system, Dept. of 
Chemistry, UWO

Pyridine Sigma Aldrich Anhydrous, 99.8% 270970

Phosphate 
Buffered Solution

Sigma Aldrich Tablets P4417

AMEM-alpha Wisent Inc. + 10% FBS 310-022-CL

Trypsin-EDTA Wisent Inc. 0.25% trypsin 325-043-EL

Phosphate 
Buffered Solution

Gibco (-) CaCl2, MgCl2 10010-023
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and the reaction vessel was covered entirely with aluminum foil to protect from 

photo-damage. The reaction proceeded under the following conditions: room 

temperature, constantly stirred at 400-600 RPM and under a N2 atmosphere for 

approximately 24 hours. After which, PEO-cinnamate was precipitated, 2 L of diethyl 

ether was used to precipitate each 100 ml volume of PEO-cinnamate dissolved in 

DCM. The solution of of DCM and PEO-cinnamate was manually poured, slowly, 

into a beaker of magnetically stirred diethyl ether (500 RPM). The precipitate was 

then isolated using vacuum filtration and desiccation at room temperature for a 

minimum of 48 hours, covered entirely with aluminum foil to protect from potential 

photo-damage. PEO-cinnamate remained under house vacuum until further 

processing was required. The synthesized product along with the reactants, PEO and 

cinnamoyl chloride then underwent differential scanning calorimetry (DSC), Fourier 

Transform Infrared Spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-

NMR) for characterization. 

4.3. Chemical Characterization 

4.3.1. DSC 

Differential scanning calorimetry (DSC) analysis of cinnamoyl chloride, PEO and 

PEO-cinnamate was performed using a TA instruments Thermal Analysis DSC at a 

heating rate of 10 °C/min under nitrogen. The melting points were determined from 

the second heat scan at the peak point of the thermograms. 

4.3.2. FTIR 

A Bruker spectrophotometer was used to obtain FTIR spectra of solid samples of 

cinnamoyl chloride, PEO, PEO-cinnamate and crosslinked PEO-cinnamate with and 

without curcumin. 

4.3.3. 1H-NMR 

1H-NMR analyses of cinnamoyl chloride, PEO and PEO-cinnamate were performed 
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using a Varian Inova 600 spectrophotometer. Spectra were obtained in CDCl3 at 600 

MHz. The percentage of functionalized PEO was determined my integration of signal 

strengths at 3.65 ppm and 6.50 ppm associated with PEO non-hydroxyl hydrogens 

and cinnamate alkene hydrogen adjacent to the ester, respectively.  

4.4. Centrifugal Melt Spinning 

Fibers were produced using a modified cotton candy machine (Sanrio, Hello Kitty, 

Model: #APP-96209) shown in Figure 4.1. The cotton candy machine was modified 

with the replacement of the motor, with a 250 W brushless DC motor and EPOS2 

70/10 controller purchased from Maxon Motor (Switzerland). Additionally, a 48 V, 

600 W power supply from Mean Well (USA) was added. Fibers were produced with 

the as-purchased system as well as with modifications and designed spinneret (Figure 

4.2). 

Figure 4.1: Hello Kitty Cotton Candy Machine as-purchased with first batched of 
spun sugar (left). Spinneret of as-purchased system (right). 
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Figure 4.2: New spinneret design for the modified cotton candy machine. 

4.5. Fiber Characterization and Image Analysis 

4.5.1. Scanning Electron Microscopy  

A Hitachi S-3400N variable pressure scanning electron microscope was used to 

obtain high resolution images. Nine locations were pre-selected using accompanying 

software to allow for consistency between samples. An accelerating voltage of 10 kV 

and working distance of 21 - 25 mm was selected. 

4.5.2. Image Processing 

ImageJ was used to measure and collect fiber diameters from SEM images. Scale bars 

located at the bottom right corner of each SEM image was used to calibrate the 

measurement tool and fiber diameters were measured perpendicularly to fiber edges. 

4.6. UV Crosslinking and Characterization 

4.6.1. UV Irradiation 

PEO-cinnamate fiber samples were irradiated by with UV for various lengths of time 

at a distance of 5 cm from the light source (Figure 4.3). UV/Vis was performed as 

described below. 
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4.6.2. UV/Vis  
A Beckman Coulter DU520 General UV/Vis spectrophotometer was used to obtain 

UV/Vis spectra. Fiber samples were suspended in deionized water in a quartz cell and 

thin films were cast onto quartz slides and dried prior to measurements for UV-

crosslinking studies. Absorbances at λ=277 nm were obtained. 

Figure 4.3: UV lamp for sample photocrosslinking with shelf set at 5 cm from lamp. 

4.7. Curcumin Loading and Characterization 

4.7.1. Loading Procedure 

Crosslinked PEO-cinnamate fibers were covered with 5 ml of an ethanol and 

curcumin solution and allowed to soak for 24 hours. After which, samples were 

centrifuged at 6000 RPM for 15 minutes, the supernatant was removed and fibers 

were washed with a series of water and EtOH solutions, diH2O x 1, 50% ethanol/

diH2O x 1 and diH2O x 1, after each wash, samples were centrifuged at 6000 RPM 

for 5 - 10 minutes. After the final water wash and supernatant removal, remaining 

diH2O was left with the fibers overnight. After 24 hours, diH2O was added for a final 

wash prior to release studies. 
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4.7.2. Loading Efficiency 

Curcumin loading efficiency was determined by repeatedly washing loaded samples 

in 10 ml of ethanol, centrifugation to isolate fibers until curcumin was no longer 

detectable in the supernatant. The ethanolic supernatant was sampled and analyzed 

using UV/Vis spectroscopy. The values were compared to a standard curve of 

curcumin in ethanol. Absorbances at λ=427 nm were obtained. 

4.8. Curcumin Release 

Loaded curcumin fibers were placed into 5 ml of phosphate buffer solutions (PBS) 

with a pH of ~7. Release was monitored over a period of 14 days. The centrifuge 

tubes were centrifuged at 6000 RPM for 12 minutes, and the supernatant was 

collected at specific time points. Samples were analyzed using UV/Vis spectroscopy. 

4.9. Cell Studies 

4.9.1. Cell Culturing 

A549 human lung carcinoma cells were maintained at 37°C and 5% CO2 in Minimum 

Essential Medium Alpha Medium (AMEM, Wisent Inc.) supplemented with 10% 

fetal bovine serum (FBS, Wisent Inc.). Dose-response curves were determined by 

incubating 1x105 cells/flask (T25, Nunc™ Thermo Scientic) with various 

concentrations of prepared free curcumin solutions with final concentrations in 

culture media of 0, 0.5, 1, 2, 5, 10, 15, 20, 50 and 100 µM for the first trial and 0-10, 

12 and 15 µM for the final two trials. Three replicates were used per treatment group. 

4.9.2. Free Drug Solution Preparation and Measurement 

Curcumin was dissolved in ethanol and serially diluted to achieve the above 

concentrations (4.9.1.). This was completed under non-sterile conditions thus 

sterilization was required prior to treating the cells. Under sterile conditions, solutions 

were subsequently filtered through 0.2 µm syringe filters to remove potential bacteria, 

fungal spores and undissolved particles of curcumin. To ensure accurate 
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concentrations produced after filtering, a volume of curcumin solution was removed 

and UV/Vis spectroscopy was used to measure absorbance and compared to a 

standard curve to determine curcumin solution concentrations.  

4.9.3. Cell Proliferation Determination 

After 72 hours of incubating with free curcumin, media was removed, cells were 

rinsed with PBS, trypsinized with 0.5 ml trypsin-EDTA and diluted with 19.5 ml of 

PBS for cell counting. A Beckman Coulter Counter was used for cell number 

determination. Two counts were performed per flask of cells and the average was 

used. A fresh vial of cells was thawed for the last dose-response experiment.  

4.10. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism™ version 5.0c.  
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5. RESULTS AND DISCUSSION 
This chapter begins with the synthesis and characterization of PEO-cinnamate to 

functionalize PEO with a carbon-carbon double bond for UV photocrosslinking 

(Section 5.1). Cinnamoyl chloride was selected to add a photocrosslinkable functional 

group to the water soluble polymer PEO as it was previously demonstrated to be an 

effective molecule with no known toxic effects [89]. The utility and spinneret 

parameters of centrifugal melt spinning for the production of PEO-cinnamate fibers 

were investigated through observation and measurement of fiber morphology and 

diameter (Section 5.2).  

The material selected for producing the fibers is PEO, for its biocompatible and 

hydrophilic properties, as-spun, these fibers are not stable in aqueous environments. 

PEO-cinnamate as spun fibers are also not stable in aqueous environments. For the 

stabilization of fibers for contact to aqueous environments, such as in vitro and in 

vivo, a UV photocrosslinking treatment is used (Section 5.3). 

For the purpose of drug delivery, curcumin was loaded into the stabilized fibers via 

diffusion and the relationship between the loading concentration of curcumin and 

amount of loaded curcumin was determined (Section 5.4). The release of curcumin 

from the system in PBS was observed for 2 weeks to study the release kinetics 

(Section 5.5).  

To begin the assessment of the system, a free curcumin dose-dependence curve was 

determined with the human A549 cancer cell line (Section 5.6). This will allow for 

comparison to similar curcumin doses released from fibers. 

Figure 5.0 is a flow chart to outline the contents of this chapter.  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Figure 5.0: Flow-chart outlining contents of this chapter. 
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5.1. Synthesis and Chemical Characterization of Polymer 

5.1.1. Synthesis of PEO-cinnamate 

PEO-cinnamate was synthesized by functionalizing PEO with cinnamoyl chloride via 

an esterification reaction involving the hydroxyl groups of PEO and the reactive acyl 

chloride of cinnamoyl chloride with the presence of pyridine for deprotonation of 

PEO hydroxyls (Scheme 5.1). The product was then precipitated in diethyl ether, 

isolated and purified through vacuum filtration and diethyl ether rinsing and finally 

dried under house vacuum. 

Scheme 5.1 - Deprotonation of PEO (4.1) by pyridine followed by esterification with 
cinnamoyl chloride (4.2) to form PEO-cinnamate (4.3).  

5.1.2. Chemical Characterization of Product 

To demonstrate functionalization of PEO with cinnamoyl chloride, differential 

scanning calorimetry (DSC) was performed on the reactants and product of the 

synthesis reaction. DSC spectra show distinct single peaks for reactants and product. 

Melting temperatures for cinnamoyl chloride, PEO and PEO-cinnamate are 32°C, 

66°C and 61°C, respectively (Figure 5.1). The product has an intermediate melting 
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temperature demonstrating functionalization and the sharp single peaks demonstrate 

purity of the reactants and product. 

Figure 5.1: DSC thermograms of cinnamoyl chloride, PEO and PEO-cinnamate. 

Demonstrating the purity of the end product, meaning no residual free PEO or 

cinnamoyl chloride shown with a single peak in the DSC thermogram is important in 

the step of characterization. Although, cinnamoyl chloride has been shown to be non-

toxic in vivo [95].  

Up until this point, the functionalization of PEO has been presented as a one-sided 

reaction. However, considering the symmetry of PEO’s structure, there are three 

possible scenarios for this functionalization reaction. 1) unreacted, pure PEO (4.1), 2) 

single-sided functionalization (4.3) and 3) double-sided functionalization (4.4) 

(Figure 5.2). Although, having unreacted PEO is highly unlikely due to the reactivity 

and use of excess cinnamoyl chloride. The possibility of multiple end products 

require the processing and interpretation of FTIR and 1H-NMR spectra to take this 

into account. 

H
O

O

O

n

32°C

66°C

61°C

0 20 40 60 80 100
-20

-10

0

10

20

Tm= 66°C

Tm= 32°C

Tm= 61°C

Temperature (°C)

H
ea

t F
lo

w
 (m

W
)



www.manaraa.com

!37

Figure 5.2: Chemical structures of possible outcomes of the synthesis reaction. 

Next, FTIR was performed again on the reactants and product. The FTIR spectra of 

PEO shows an -OH stretch present in the 3600 cm-1 region and a strong sp3 C-H peak 

in the 3000 - 2840 cm-1 region (Figure 5.3). These peaks are in agreement with the 

chemical structure of PEO. The FTIR spectra of cinnamoyl chloride shows a strong 

aromatic C=C stretch in the 1660 - 1500 cm-1 region and the strength of the peak can 

be attributed to the conjugation of the aromatic ring (Figure 5.4). Finally, the FTIR 

spectra for PEO-cinnamate shows a strong sp3 C-H peak in the 3000 - 2840 cm-1 

region comparable to the peak in PEO, however, there is no -OH stretch detectable, 

indicating two-sided functionalization through the disappearance of this peak when 

reacted with cinnamoyl chloride (Figure 5.5). Other peaks such as C=O and C=C 

detected in the cinnamoyl chloride spectra are not clear in the PEO cinnamate spectra 

due to the molecular size of the PEO polymer. 
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Figure 5.3: FTIR spectra of PEO. An sp3 C-H stretch predominates and a -OH is 

visible. 

Figure 5.4: FTIR spectra of cinnamoyl chloride. Aromatic C=C stretch, C=O stretch 
and sp2 C-H stretch are present. 
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Figure 5.5: FTIR spectra of PEO-cinnamate functionalized on both ends. An sp3 

stretch is present and the -OH stretch is absent as compared to the PEO spectra. 

To further characterize the product, 1H-NMR was performed, and the 

functionalization of PEO with cinnamoyl chloride appeared successful, as evidenced 

by the shift in functionalized cinnamoyl peaks from 6.63, 6.66, 7.44, 7.48, 7.56, 7.82 

and 7.85 ppm (Figure 5.6A) for free cinnamoyl chloride to 6.45, 6.48, 7.38, 7.44, 

7.52, 7.68 and 7.71 ppm for functionalized cinnamate (Figure 5.6B). The peaks are 

further downfield for cinnamoyl chloride compared to PEO-cinnamate due to the 

highly electronegative chlorine atom in cinnamoyl chloride which attracts the 

electrons surrounding each proton and results in less shielding and an increase in 

chemical shift.  

Complete functionalization was achieved as determined by integration of the PEO 

multiplet at 3.65 ppm with respect to the doublet at 6.50 ppm associated with the 

hydrogen adjacent to the ester carbonyl of cinnamate (Figure 5.7). Additionally, there 

was no free cinnamoyl chloride as determined by the absence of those peaks (Figure 

5.6A).  
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Figure 5.6: NMR spectra of pure cinnamoyl chloride (A) and the synthesis product 
and chemical structure of PEO-cinnamate (B). A chemical shift difference between 
pure cinnamoyl chloride and functionalized PEO-cinnamate is present. 
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Figure 5.7: NMR spectra comparison of 4 hour (5.6B) and overnight (above) 
reaction times. 

There is more than one way to process NMR data in terms of which peaks to set as 

the reference for integration. For instance, any of the peaks could be set as the 

reference if their value was known to be accurate. In this case, the PEO peak could be 

set as the reference as the number of hydrogens of a 35 000 g/mol molecule could be 

calculated with reasonable accuracy as determined by the supplier. With this method, 

after reaction times of 4 hours, 6 hours and overnight, 81.0 - 92.5% of the PEO 

hydroxyls were functionalized with cinnamoyl chloride on two sides as suggested by 

the integration value between one and two for the reactions. And 100% of molecules 

had at least one side functionalized. 

This result also indicates that the shortest reaction time between PEO and cinnamoyl 

chloride of 4 hours is a sufficient amount of time to allow the reaction to proceed to 

completion. In the future, further optimization could be performed to further reduce 

this reaction time if desired. Another consideration would be the base used in 
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deprotonating the hydroxyls of PEO. A stronger base could make the reaction proceed 

at an even more efficient rate. However, with a stronger base such as triethylamine 

(TEA) an acid/base wash may be required to remove the excess base adding another 

step in the procedure.  

These results reiterate the DSC and FTIR findings that PEO has been fully 

functionalized with cinnamoyl chloride and that a pure product is possible to obtain. 

5.2. Characterization of Functionalized Fibers 
In order to demonstrate the utility of a cotton candy machine for the production of 

fibers as reported by other groups, we produced pure PEO fibers using an as-

purchased cotton candy machine and observed fiber morphology (Appendix A). We 

deemed the fiber quality produced was sufficiently promising to proceed with the 

investigation.  

One of the important parameters of centrifugal melt spinning is the melting point of 

the polymer. Melting point (Tm) of pure 35 000 g/mol PEO was determined to be 

66°C, in order to translate this process to PEO-cinnamate, the Tm was determined to 

be 61°C.  With a distinct Tm, PEO-cinnamate fibers were produced using an as-

purchased cotton candy machine, which was determined to spin at a fixed rate of 

~2300 RPM and were imaged with optical microscopy (Figure 5.8). The average 

fiber diameter was determined to be 28.9±13.3 µm and the fiber diameters had a 

normal distribution as shown in Figure 5.9. 
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Figure 5.8: Optical microscopy images of PEO-cinnamate fibers produced with the 
as-purchased cotton candy machine. 

Figure 5.9: Fiber diameter distribution of PEO-cinnamate fibers shown above 
produced using an as-purchased cotton candy machine. 

Although small fiber diameters are critical for tissue engineering applications as it 

influences cell morphology, migration and stem cell differentiation, the importance of 

fiber diameter for drug delivery is related to the release rate of drug from the fiber. 

For diffusion dependent fiber delivery systems, larger diameter fibers may have 

slower diffusion due to the diffusion distance from the core of the fiber. Also, the 

surface area to volume ratio is increased for smaller diameter fibers which may 

enhance drug release [96]. 
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The next fiber production step involved the modification of the spinning set-up. PEO-

cinnamate fibers produced using this modified centrifugal melt spinning at 6000 

RPM, 45 V for voltage controlled temperature and under ambient conditions with a 

newly designed spinneret. Images were taken with SEM (Figure 5.10). Fibers 

produced had a uniform morphology along the fibers and an average fiber diameter 

was determined to be 11.5±5.5 µm from analysis of 120 fibers of the sample. 

Figure 5.10: Scanning electron microscopy images of PEO-cinnamate fibers 
produced with modified system and newly designed spinneret at 150X (A-C) and 
350X (D) magnifications. Scale bars are 300 µm (A-C) and 100 µm (D). 

The fiber diameters were normally distributed as shown in (Figure 5.11A). The 

values are well described by a Gaussian curve (Figure 5.11B). Therefore, with 

modifications of the fiber spinning system, the average fiber diameter was reduced 

and the distribution was narrowed. Although the differences can not be directly 
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compared given that the imaging modalities differ. 

Figure 5.11: Fiber diameter distribution of PEO-cinnamate fibers shown in A, 
average diameter of 11.5 ± 5.5 µm (n = 130). B presents fiber diameter frequencies 
(pink) in respect to a Gaussian curve (black). 

These results demonstrate the utility of centrifugal melt spinning for the rapid and 

facile production of uniform polymeric fibers. Also, the demonstration that fiber 

diameter was altered through the alteration of the spinneret, indicates the possibility 

of optimization of the process further to obtain a wide range of diameters by changing 

that parameter. Additionally, as reported by [48], this fiber production method is 

controlled by several parameters permitting the future optimization through changes 

in rotation speed, solution viscosity, environmental temperature and others. 

5.3. UV Crosslinking of Fibers 
The fibers were irradiated with a 365 nm UV lamp (Cole-Parmer, Canada) at a 

distance of 5 cm from the source, the shortest distance available with the stand. Using 

UV/Vis spectroscopy, it was shown that prior to UV exposure, C=C of cinnamate was 

intact, showing maximum absorbance at 277 nm. Also, PEO which does not possess 

the C=C shows no absorbance at 277 nm. First, crosslinking was demonstrated on 

thin films as a proof-of-concept for the time dependency on the degree of crosslinking 
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associated with C=C diminishes, indicating crosslinking. After success with the thin 

films, we applied this method to the fibers. As the fibers are exposed to 1, 2 and 4 

hours of UV, absorbance decreases, indicating breakage of the C=C and non-C=C 

bond formation suggesting crosslinking had occurred, measurements were made in 

triplicate and the variability is reflected by the error bars (Figure 5.13). To further 

demonstrate UV crosslinking of fibers, FTIR spectra of PEO-cinnamate before and 

after UV irradiation was obtained. A peak at 1640 cm-1 corresponding to C=C stretch 

of cinnamate moieties is reduced (Figure 5.14). Qualitative demonstration of 

stability, fibers embedded with curcumin were suspended in waters and centrifuged 

(Figure 5.17). A network is clearly visible as the pellet in the centrifuge tube. 

Figure 5.12: UV/Vis spectra of PEO-cinnamate thin films on quartz slides after 
various lengths (0, 0.5, 1 hour) of UV exposure. The peak at 277 nm is associated 
with C=C double of cinnamoyl chloride. 
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Figure 5.13: UV/Vis spectra of PEO-cinnamate fibers after various lengths (0, 1, 2 
and 4 hours) of UV exposure and pure PEO without irradiation. A peak at 277 nm 
associated with C=C in cinnamate is outlined. 

Figure 5.14: FTIR spectrum of PEO-cinnamate before (solid line —) and after 4 
hours of UV irradiation (dashed line - - ). 
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Crosslinking is essential for water soluble polymers such as PEO in order to stabilize 

the polymer for contact to aqueous environments such as any physiological 

environment. This set of results demonstrates quantitatively and qualitatively the 

crosslinking of PEO-cinnamate fibers to stabilize them in an aqueous environment. 

The peaks of UV/Vis spectra at 227 nm look diminished nearly to baseline of PEO, 

however, there is the possibility of some C=C bonds and uncrosslinked chains 

remaining. This would be due to steric hindrance, particularly related to the thickness 

of the film or fibrous mat.  

In the future, in order to increase crosslinking efficiency, a UV lamp emitting 

wavelengths closer 277 nm would be more appropriate. This would decrease the 

length of time required for crosslinking as the wavelength is closer to the absorption 

wavelength. 

5.4. Curcumin Loading 

One of the applications of the stabilized fibers is drug delivery. In order to 

demonstrate the utility of this material as a drug delivery carrier, investigation of 

loading and release kinetics was required. First, to determine that loading of curcumin 

into the fibers effectively occurred after soaking in an ethanolic curcumin solution, 

the sample was visually observed for a colour change and further analyzed with FTIR 

to identify the presence of functional groups associated with curcumin not present in 

the unloaded sample. A sample loaded with curcumin after the excess surface 

curcumin was washed off is shown in Figure 5.15. The bright yellow hue is visually 

apparent, indicating the presence of curcumin. However, to ensure that the curcumin 

was not present only on the surface of the swollen fibers, several rinses were 

performed until the run-off contained no detectable curcumin, suggesting surface 

curcumin was removed. FTIR analysis revealed a peak at 3425 cm-1 corresponding to 

the phenolic O-H stretch present in curcumin. A peak at 2883 cm-1 corresponding to 

aromatic C-H stretch and is present for both PEO-cinnamate containing and not 
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containing curcumin. A peak at 1635 cm-1 corresponding to the conjugated system for 

C=O stretch in curcumin was present. A peak at 1466 cm-1 corresponding to C-C 

stretch bond in the ring of aromatic groups of curcumin and PEO-cinnamate were 

present (Figure 5.16). Thus, it was determined that curcumin was embedded within 

the fiber. 

Figure 5.15: Image of wet bulk fibers loaded with curcumin with a visible yellow 
hue after washing to remove surface curcumin. 

Figure 5.16: FTIR spectrum of crosslinked PEO-cinnamate with (orange) and 
without (black) curcumin incorporation. 
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Figure 5.17: Fibers loaded with curcumin in water (left) and isolated via 
centrifugation (right) to demonstrate the stability of the fibers in an aqueous 
environment. 

To determine whether the amount of loaded curcumin was tuneable, various 

concentrations of curcumin in ethanol, 1, 3 and 5 mg/ml were used for loading. It was 

determined that as loading concentration increased, curcumin loading increased 

(Figure 5.18).  In a loading concentration of 1, 3 and 5 mg/ml, 200 mg of fibers 

carried 23.89±2.29, 37.32±0.63, 54.32±0.62 µg, respectively. Thus, the amount of 

curcumin loaded is tuneable based on the curcumin loading concentration and is 

related to the amount of fibers by mass. To ensure curcumin was maximally drawn 

out of the fibers, extraction continued until curcumin was undetectable in the 

supernatant using UV/Vis spectrophotometry measurements at 427 nm, the 

absorbance wavelength for curcumin [97]. Representative images of the fibers during 

the first and last wash extractions are shown in Figure 5.19. 



www.manaraa.com

!51

Figure 5.18: Amount of curcumin loaded relative to the concentration of curcumin 
loading solution. 

Figure 5.19: Curcumin loaded fibers during the first extraction (left) and last 
extraction (right) the red circle identifying the bulk of the fibers. 

5.5. In vitro Curcumin Releases 

Loaded fibers were placed in PBS in a 37°C shaking water bath for 7 and 14 days for 

fibers loaded in 1 mg/ml and 3 mg/ml solutions, respectively. These end points were 

selected as consecutive measurements at these time points indicated a plateau, with 
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no further release. Curcumin release was observed and a release profile was obtained 

to study the type of release from this polymeric system. It was found that the 

cumulative amount of curcumin release is dependent on the amount of curcumin 

loaded as seen with the raw data in Figure 5.20. Also, the release profiles do not 

significantly differ from each other as demonstrated with a two-way ANOVA, 

comparing the two release curves once scaled based on the final cumulative amount 

of curcumin extracted (Figure 5.21), p = 0.6095, indicating a non-significant 

difference in the release profiles.  

Figure 5.20: Raw data release profiles of PEO-cinnamate fibers loaded in 1 mg/ml 
(green) and 3 mg/ml (blue) loading concentrations. 

To further characterize the release, using mathematical models to describe the data 

may be useful. The empirical model described by Ritger and Peppas [98], compares 

the release profile to a power law. Two fitting parameters k and n are used to fit time, 

t, to cumulative release from the system, Mt/M∞. Mt/M∞=ktn, where Mt/M∞ is the 

amount of drug released, k is the kinetic constant, t is the time for release and n is the 

diffusional constant. The n-values are of significant importance for relating the 
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system geometry to the drug release mechanism as shown in Table 3. The n-values 

for both fibers loaded in 1 mg/ml solution and 3 mg/ml solution when fitted to the 

empirical model, diffusion exponent were 0.48 ± 0.14 and 0.31 ± 0.02,  respectively. 

The fit of this model was reasonable with R2 values of 0.86 for 1 mg/ml and 0.99 for 

3 mg/ml loading. 

Figure 5.21: Data scaled based on maximum curcumin extracted through release in 
PBS. Data fitted with Power Law for Mt/Mi ≤ 0.6. 

The diffusion coefficient, n, for the 1 mg/ml, according to this model, falls within the 

range of anomalous (non-Fickian) transport (Table 3). For the 3 mg/ml loading, 

according to this model, does not fall within any of the ranges described. This could 

be due imperfections in the fiber and thus variable release unpredicted by the model. 

Further characterization of loaded fiber morphology would be useful. As determined 

from the two-way ANOVA, these two plots are not significantly different from each 

other, and thus should exhibit similar non-linear fits. Also, these tests were performed 

in triplicate, and with further optimization and replicates, the calculated values will 

become more accurate. Additionally, this data could be fitted to equation 5 of chapter 

2. This would allow for the determination of D, the diffusion coefficient which would 

best describe the diffusivity of curcumin from the system.  
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Table 3: Diffusion exponent and drug release mechanisms of different geometries 

5.6. Effect of Free Curcumin on Cells 

The A549 cell line was selected based on literature findings and similar intracellular 

targets to squamous cell carcinomas [99-101]. Although the A549s are not derived 

from a SCC, the intracellular targets of curcumin are more important and relevant for 

cell testing. It has been established that drug sensitivity is not tissue-specific when 

testing cancer cell lines [102].  

To determine the dose-dependence of curcumin on cell growth inhibition, an initial 

range of curcumin concentrations ranging from 0 - 100 uM was selected to treat cells. 

This starting range was selected based on previous work [99-101].  The initial range 

of concentrations revealed 100 % effectiveness with concentrations of 15 µM and 

above (Figure 5.22). This value is significantly different from the values previously 

reported. In the literature, the IC50 value reported is 18 µM [103]. Possible factors 

contributing to this discrepancy include curcumin purity, and light and heat exposure 

to samples as curcumin is both light and heat sensitive.  

Dose-dependent growth inhibition was observed and the IC10, IC50 and IC90 were 

determined from these curves (Figures 5.22 and 5.23) to be 1.87 ± 0.32 µM , 7.28 ± 

0.34 µM, 13.37 ± 0.53 µM, respectively. These values will be useful in determining 

the amount of curcumin to load into the stabilized PEO-cinnamate fiber drug carrier 

for preliminary studies. Also, these values may be used as bench marks for comparing 

the effect of curcumin released from fibers versus free curcumin, as the system may 

Drug release 
mechanism

Diffusion Exponent, n

Thin film Cylinder Sphere

Fickian 0.5 0.45 0.43

Anomalous (non-
Fickian) transport

0.5<n<1.0 0.45<n<0.89 0.43<n<0.85

Case-II Transport 1.0 0.89 0.85
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increase the bioavailability and thus have an increase effect. 

Figure 5.22: Broad range free curcumin dose-response curve. 

 

Figure 5.23: Higher resolution free curcumin dose-response curves original batch 
(blue), fresh batch (orange). 

5.7. Effect of Curcumin Loaded PEO-Cinnamate Fibers 

Using the results from the free curcumin dose-dependency study, calculations are 

prepared as a guideline for moving forward with the study of loaded curcumin on 
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these cells. Calculations for loading equivalent amounts of curcumin for in vitro 

studies are shown below. 

IC 10: 

IC 50: 

 

IC 90: 

As shown with the range achieved for the loading concentration and actual amount of 

curcumin loaded into the stabilized fibers (Figure 5.18), it is possible for these 

amounts of curcumin to be incorporated into the stabilized fibers.  
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6. CONCLUSIONS 
We have demonstrated the synthesis of a photosensitive polymer that can undergo UV 

photocrosslinking for aqueous stability following fiber fabrication using a modified 

cotton candy machine. Ultimately, this fiber fabrication method presents the potential 

for a highly scalable method to produce fibers for biomedical purposes, such as drug 

delivery. The utility of these stabilized fibers for carrying and delivering curcumin 

has also been demonstrated. And we have demonstrated the relationship between the 

curcumin loading concentration and amount of curcumin actually loaded. 

Additionally, the effect of free curcumin in a dose-dependent manner on an A549 

cancer cell line has been investigated. Thus, this stabilized polymeric system has the 

potential to carry a sufficient amount of curcumin for an effective reduction of cancer 

cell growth. 

7. FUTURE DIRECTIONS 
There are several future directions and experiments that can follow this work. Some 

of the major material components to be explored are the swelling and degradation 

properties of the system. These two parameters effect drug release, are important to 

define for polymer systems and the characterization of which is essential in fully 

understanding the system. To further investigate the release of curcumin in vitro, in 

place of PBS, simulated body fluid consisting of proteins would be of interest to 

determine if the presence of proteins would effect the release of curcumin [104]. 

These studies could be better predictors of how this system would perform in vivo. In 

addition to studying the release of curcumin in vitro, the study of the effect of 

curcumin is important in establishing a relationship between the drug and cells. One 

study could be of the antioxidant activity of curcumin, post-release from the 

polymeric system to ensure the activity remains intact. The 1,1’-diphenyl-2-

picrylhydrazyl (DPPH) assay is a possibility and has been shown to be effective in 

detecting the antioxidant activity of curcumin [96]. The effect of free curcumin on 
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A549 cells have been established in the work and the concentrations of such an effect 

has been measured. These values can be used as a guideline for the study of the effect 

of curcumin loaded into the stabilized fibers on the cells. It would also be of interest 

to perform these studies on another cell line with similar cellular targets to see if the 

effects are comparable. And of course, in vivo studies with an appropriate animal 

model would be an important step in evaluating the efficacy of this system after the 

optimization steps with the in vitro studies. These experiments would determine the 

anti-cancer efficacy of the system and any system related toxicity. One way to study 

this in a controlled experiment would be to treat areas of nude animal skin with a 

mutation inducing chemical such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and 

at various times post-treatment of TPA apply the polymeric system for various lengths 

of time and evaluate the changes in the skin macroscopically and microscopically 

with histology.  
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APPENDICES 

Appendix A: As-spun PEO fibers fabricated using a modified cotton candy machine. 
Scale bar for the right image is 50 µm. 

Appendix B: Fluorescence images of stabilized PEO-cinnamate fibers dry and in 
water. Although the certainty of whether these two fibers are identical, there is a 
visible size difference. Scale bars for both images at 100 µm.  
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Appendix C: UV/Vis calibration curve for curcumin in ethanol. 

Appendix D: UV/Vis calibration curve for curcumin in phosphate buffered saline. 
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